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Abstract—In this paper, a clear Lie-Poisson Hamilton-Jacobi theory is presented. How to con-
struct a Lie-Poisson integrator by generating function methods is also given, which is different from
the Ge-Marsden methods [1]. An example on a rigid body has been given to illustrate this point.
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1. INTRODUCTION

A Lie-Poisson system is a very common kind of Hamiltonian system which is popular in rigid
body, celestial mechanics, robotics and fluid mechanics. Hamilton-Jacobi theory has played an
important role in constructing the symplectic integrators (see [2]). How to construct a Lie-
Poisson integrator for a Lie-Poisson system using Hamilton-Jacobi theory has been discussed by
Ge (3,4], Ge-Marsden [1], Channell and Scovel [5] and the author’s paper [6]. When I derived
the Lie-Poisson Hamilton-Jacobi theory, I found that a condition should not be ignored by the
Lie Poisson Hamilton-Jacobi Equation (LPHJE), which is given by Ge and Marsden [1]. What is
more, the condition is essential to construct the momentum-preserving integrators and high order
Poisson integrators, which is very important for many practical systems. As to what is shown
by us, the momentum-preserving integrators cannot be constructed by the generating methods
without the condition. An analysis based on a free rigid body is also given using the generating
function method.

2. LIE-POISSON HAMILTON-JACOBI EQUATION

Let G be a compact Lie Group. t — g¢(t) € G is a motion on G. Let g be a Lie algebra of G,
g* be the dual space of g. Define

Jr: TG —g"
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is the momentum mapping corresponding to the left translation on G. Then, from the following
commutative diagram

S

™G = TG
Jr ! L Jr
gt P g

we know that the phase flow on 7*G can induce the phase flow on g* and the Poisson transfor-
mation on g* corresponds to a symplectic transformation on T*G.

Let u!(q, qo)(if exists) be the first-kind generating function of symplectic mapping S. Then,
we have the following proposition.

ProposiTION 1. [1] Ifu: G x G — R is invariant under the left action of G, i.e., ut(gq, gq0) =
u'(q, go), then the symplectic mappings generated by u,

St (go,po) — (¢;p),

where
ou

ou
= —— . s = em—— , 1
Do o (9.90) P= 5 (9, 90) (1)

preserve momentum mapping Jy, which is corresponding to the right translation on G. That is
to say
']L 0§ = JL-

DEFINITION. If Gacts on the configuration space without fixed point, then we say G acts on G
freely.

PROPOSITION 2. [5] If G acts on G freely, the symplectic mapping S preserves the momentum
mapping Jp,, then the first-kind generating function of S is left invariant.

For the left invariant system, such as a generalized rigid body, the Hamiltonian function is left
invariant, the phase flow is also left invariant. Furthermore, the momentum mapping Jz, is a
first integral for this dynamics, i.e., is invariant under the phase flow of G%;, 7 Therefore, if the
action is freely (generally speaking, the action is locally freely), the first-kind generating function
is left invariant.

Let u’(g, o) denote the first-kind generating function of S, then by the left invariance,

u'(q.q0) = u' (e, 'qo) =d'(g),  where g =q 'go.

By equation (1), we have

t ~ts —1 8~t L 1 ~

o = _Ou ((q,tIo) _ 009" q0) _ 99 (Lg-190) _ _L;_l@ , (2.1)
940 940 940 99 |g—g-14

and . )
t gt (o~ ~t ~
p— @) 080 ")  9(RyV(@) _ pup. DE ’ (2.2)
qo

9 dq dq 99 | g—q-140

where V(q) = q7!, and V* = —L;_.R;_.. Therefore, equation (2.2) can be simplified

* * * 81‘1
p= —ququ,-quoa_g (23)

9=q" g0
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Then, the momentum mapping Jgr(q,p) is

* * * au * aﬁ
Ho = JR(QOJJO) = qupﬂ 'LqOLq_1 a =- q—lqoa_
9lg=q-14o 9lg=q-140 (3.1)
L, 0l ’
_ _Lg 5 ,
9lg=q-140
* * * * 671
p‘=JR(q’p)=Lq L L—IR —1Rqoa
9lg=g-1q0 (3.2)
B o g 08 Ot '
P —1 _ - .
¢ g 9=q"1q0 09 9=9"'q
By equation (2), we can prove Proposition 2 analytically.
* * * aﬂ
Mo = J1(q0,po) = Rgpo = —Rg Ly | % :
9lg=q-190
* * * * * aa
M =Jp(q,p) = Rip = —Rqu,quleqoa—
9lg=q-190
o
= - —1R;
° 8 9lg=q-1q0
o
= -R LI, a“ = M.
9lg=q-140

This means J;, o S = Jp. Denote g = ¢~ lqg, then, we have the following theorem.

THEOREM 1. The first-kind generating function u of the symplectic transformation on T*G
define a Poisson transformation

P:po— p=Ad) 1o

on g*, where p, yio is defined by equation (3.1), (3.2), respectively.

The first-kind generating function u!(q,qo) of the symplectic mapping S : (go,po) — (q,p)
satisfies the following Hamilton-Jacobi equation

ou'(p,q)

5 THP q) =0, (4)

where H(p,q) is the Hamiltonian on 7*G and the mapping S is defined by equation (1).

Now, we have a Hamiltonian H on g*. The momentum mapping Jr induces a Hamiltonian
on T*G, which is H o Jg. By Theorem 1, the Lie-Poisson Hamilton-Jacobi (LPHJ) equation for
Lie-Poisson system on g* can be derived.

THEOREM 2. The u, H, Jg is defined as above, then the generating function u induces a gener-
ating function @ on the g, which satisfy

ot ot
i (<R 5 =0 )

where
9=q g (6)

In the paper of Ge-Marsden [1], condition (6) is ignored. But I think it cannot be ignored,
even if we constrain our discussion on g*. We should use our example to illuminate this point
later.
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REMARK.

(1) If we can construct the generating function u(g), we then have u(go,¢q). This function
can generate a symplectic mapping on 7*G. By the commutative diagram, we have a
Poisson mapping on g*. This is the main point of constructing a Lie-Poisson integrator
by generating methods.

(2) The above theory of a generating function on TG can be reformulated by the ezxponential
mapping in terms of algebra variables, which has been done by Channell and Scovel [2].
We now give some results. For g € G, choose £ € g so that g = exp(£). Then, the LPHJ
equation can be transformed into

0
5 + H(~du-y(adg)) =0, (7)

where
My = —du - x(ady), M = —du - ¥(ady). (8)

The function x and ¥ can be expanded as Taylor series, which give

1 1,
x(ade) = I + §ad5 + ﬁad£ +o
Wlade) = x(ade) — ade,

and the condition (6) g = ¢~ 'qq is transformed into &|;—¢ = Ig.

3. THE GE-MARSDEN INTEGRATORS
AND THEIR DRAWBACKS

According to the Ge-Marsden algorithm, condition (6) is ignored and only gives a generating
function which can generate an identity mapping on g*. We use Channell and Scovel's [5]
representation.

The generating function is given by

— (6t
u:uo+z<n?
n=1 ’

where ug = (£,&)/2 can generate the identity on the regular quadratic Lie algebras.
After substituting (10) into the LPHJ equation, we find

n

U, (10)

0H
up = —H(V), Uy = H duy - P(ade), . ... (11)
In the following, we will use so(3)* as an example to illustrate the algorithm and its shortcom-
ing.
For so(3)*, up = £2/2, and V = £. Thus, the first-order and second-order integrator can be

given by
2 2

. T -
51:u0+TU1:%*TH(€):%_§f'I ¢,
and
g, T € T 0H ,
52251+Eu2ZE—TH(£)+7w‘dU1"W(ad§)
52

2
T ~1 T 1 -1 i
=2 = T ST (T 0(E)).

By equations (8) and (9), we have

M - A’[O = —du - adg. (12)
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Now, we will prove that the generating equation Sy surely generates the first-order integrator
of the Euler equation. But the S; does not generate the second-order integrator, and in the terms
of this algorithm we cannot construct the momentum preserving integrators.

Since

2
ds, =d (% - 25-1‘%) =¢-1I7Y%,

and Mo = —dS; - x(adg) = (—€+7171&) - x(€), we have that € = — My + O(7). By equation (12),
and using the fact that £ - ade = 0, we have

M — M, = (€— TI_IE) cade = —TI‘lg-adg
=76, 17| =7 [-My+ O(7), I H(~Mp + O(7))]
=7 [MO,I_IZ\/IO} + 0(72),

which is an approximation solution to the Euler equation
M= [MI'M]. (13)
For generating function S, we first compute the function x(€). Let
X(€) = 1+ ar§ +ax€?,

where a1,a2 can be solved analytically as follows (see the Appendix):

1 — cos(|€])

M7 Sin2(e) + (1 cos(€)?
, - 1% sinlg] —
onl® L mEZ L (el - e

4= sin? f€|+(l—cos|§’)2

Thus,
ug = =171 (I (&) = - (I 'e.I17%) - a7 T (I71¢-€7),
and 9
Sy =€ — 77l — 72 (171) ¢ - %«z (axI7'¢ - (I - €%)).
By
Mo = —dSs - x(€) = ~§ ~ 7€ x(&) + O(?),

we have

£ =M+ 7€ x(8) + O(r?).
Therefore, by equation (12),

2
M — My = —dS, - ade = — (5 —rI e - (1) - %d(azl“ls- (1'¢- 62))) £

=7 [Mo, 1™ ' My] +ar7? ([Mo. 17" Mo), I " My] + [Mo, I [Mo, I7*My)]])
+ap {1 Mo (I Mo~ MZ) + 17" (17" Mo - M) - My}
2
T _ . - :
-5 dla- (I €%)) £+ 0 (7).

(14)

According to the Euler equation (13), the second-order approximation solution should be

2
M~ My =7 [Mo, 17 M) + - {[[Mo, 17" Mo) .17 Mo] + [Mo, I [T} Mo, Mo] |} + O(r%).

(15)
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If§ — 0, ast — 0, the equation (14) approximates (15). But in this case, £ approximates to M,
as 7 — 0, after complex computation, we find that the equation (14) does not approximate to
the equation (15). Thus, the generating function S, cannot generate the second-order integrator
to the Euler equation.

As we have proved, the generating function S; surely generates a first-order integrator to the
Euler equation. But the momentum mapping preserving integrators should satisfy J (g, M) =
J1(go, Mp), which in terms of T*SO(3) is gM = qoMy, ie., M = ¢ qoMy. If we want to
construct the momentum mapping preserving integrators, we should estimate the g € G in the
meantime. If we have a formula M = gM,, it is natural for us to let g = ¢~ 'qo, and thus,
g = gog~'. If the algorithm on so(3)* is designed well, the above algorithm about g € SO(3)
is correct. In the next section, we should use our LPHJ equation theory to construct such
integrators. But in the algorithm of Ge and Marsden, the algorithm on G cannot be given, for
the condition (6) is ignored. Now, we would give a detailed explanation.

Using another form of equations (7) and (8), we have

My = —du - x(adg), M = exp(ad¢) Mo. (16)

As we have proved, & = —Mp + 717 1€ - x(€) for the first-order integrator. If we let ¢ = gog™! =
qo exp(—&) = goexp(Mo — 717 1€ - x(£)), the ¢ is not what we want, i.e., the approximation of the
motion equation ¢ = ¢/ ~'M. Indeed, from the Ge-Marsden algorithm, we cannot even give the
form of g, let alone construct the momentum preserving algorithm.

4. THE EXACTLY MOMENTUM PRESERVING
LIE-POISSON INTEGRATOR

In this section, we will use the LPHJ equation and condition (6) to construct the momentum
preserving Lie-Poisson integrator. For convenience, we take so(3)* as an example.
The Hamiltonian for so(3)* is H(M) = $M - I-'M. By equation (7), we have

1
2

1

de +
e T 1

, 1
M = —du-y(ade) = —du - (1 - ad‘g + O(ad?)) = —du + §du ~ade + O (adg) .

After substituting H into equation (7) and using the expansion of ¢, we have

Ou 1 '
Bt +H (—du + §du ~ade — O (adf))
0 1 1 . 1 .
=224 s <—du + ~du-ade + O (ad%)) It (—du + -du-ade + O (ad%))
ot 2 2 2
:%+EI"1-du~du—1[’1~du~du(ad)+O(ad2)
at 2 2 ¢ € (17)
_Ou 1 ., Ou Ou 1__; Ou [Ou 9
=52l e a3l 'Fs'<3_§ad5>+O(T)
ou 1 du Ou
ol fe I 2
ot T2l el
=0.

for du - du-ade = du - [du,&] =0 and £ = O(7).
We choose u = (I¢ - £)/(27), then equation (17) is satisfied. Therefore, the algorithm can be
given by equation (16)

Mo = —I¢ - x(§), (18.1)
M = exp(€)Mpy. (18.2)
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Solve equation (18.1) for £ and then substitute £ into (18.2), we can have the algorithm. For
q € SO(3), we let ¢ = goexp(—E), which is a first-order approximation to the motion equation.
In this algorithm, how to solve ¢ from equation (18.1) is very important. Using the linearlized
technique and the expansion of x, we give an iteration formula as follows:

(147 [e1€~ (e3¢ ¢ +ea)I-" Mo x €) + c2(I~TMy)] ) 8¢ = Re = €xs1 — &,

where
ol = 2—|§fsm|§|—2005[§|’ c2:COS|£|2_1,
e €]
g _ 2l lelcos el £ 3sinle] 20l sinle]
€] €]

The above algorithm can be applied to a generalized rigid body, where the Hamiltonian of
the system is quadratic. But using the above derivation to construct the high order integrator
as having done to the symplectic mapping would be very difficult. A composition method [6] is
recommended in this case.

APPENDIX
THE FORMULA OF x(z) IN 50(3)

According to the definition, we have
. — &
tex(£) = 2;6 CESY
x(§)iex(—€) = Ide.

For £ € s0(3), by (€)/(I[ll)* = —(&)/([l€]l), we have

ie“’(‘O:i(r:z iz(kL i((kzw

n=0
o k+1 2k ~ 00 k+1 2k+1 N
(1) g JeIt
:1 - ——
*é 2k+1 <ns|*) ,§ <2k+2>' el
|
L JEsinfel cosle -1
e T e

=1 +C1€+ (’,ij\gn

where ¢1 = (cos €[ — 1)/(€]?), c2 = (€] —sin [¢])/([€]*).
Let X(ﬁ) =1+ alf + a2§ then

X(E)iex (—5) = (1+a1§+a2§2) <1+01§A+6252)
=1+ (a1 + )€+ (arc1 + 2+ a2)€? + (arcz + age) )€ + agep€
=1+ (a1 +e1 ~ (arez + azen)|€]2) € + (c2 + az + arer — azeg[€f?) €2
:[d'
thus,
{ ay + ¢y — (ajez + azey)€)*> = 0,

ajcy + ¢y + as — agea|€? = 0.
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Solving the above equations, we have

4y = —c1 _ 1 —cos €|
(1 —calé®)Z + Elel®  (sin€])® + (1 — cos [¢])?
( cosle] —1)? <sin €] —|£|) o
= —02+C2l£|2+0% _ |§|2 + |§| +(Sln |£| |€|)]§|
2T U= el + P (sin |€))% + (1 — cos €])? ‘
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